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Abstract We consider the task of constructing a cost-effective daily flight
schedule with minimum number of required aircrafts and maximum number
of balanced flight routes, namely, routes with the same start and end spatial
location. We suggest a solution strategy which is able to determine the prob-
lem’s hardness by estimating the number of all flight plans with minimum
number of required aircrafts. Provided that this number is not too large, the
same algorithm is utilized for fully enumerating and detecting the set of solu-
tions that have the maximum number of balanced routes. Our experimental
study implies that the method is both effective and scalable in practice. For
example, when applied to the Australian domestic flights timetable which is
serviced by a total of eighty-eight aircrafts, our method manages to increase
the number of balanced flight routes from nine to forty-two, while using only
several minutes of computational time.

Keywords Optimal flight scheduling · deadheading flights · approximate
counting · optimization · heuristic

1 Introduction

The necessity of returning an aircraft to its starting location by adding dead-
heading flights imposes a serious challenge to airline companies, since these
trips are usually performed without receiving payments by corresponding flight
operators. Despite the fact that the task of constructing schedules that both
utilize the minimum number of required aircrafts and have the minimum num-
ber of deadheading trips is computationally hard, the problem’s importance
attracted a significant research effort [19,6,24,16].

School of Mathematics and Physics The University of Queensland, St Lucia QLD 4072, Aus-
tralia E-mail: r.vaisman@uq.edu.au · Department of Mathematics, Ben-Gurion University,
Beer-Sheva, 84105, Israel E-mail: elyager@bezeqint.net



2 Radislav Vaisman, Ilya B. Gertsbakh

It is of great interest to consider schedules that contain routes that start and
end at the same spatial location; (such routes are called balanced routes; please
see Stern and Gertsbakh [24]), since these schedules minimize the number of
deadheading flights. In this study, we propose a novel two-step approach for
addressing the problem of finding an optimal balanced schedule (OBS). Specif-
ically, we introduce a randomized algorithm for approximate counting of all
schedules that require the minimum number of aircrafts. The proposed proce-
dure opens a way for obtaining optimal solutions via full enumeration, provided
that the number of such schedules is not very large. That is, the method allows
to extract schedules that have the maximum number of balanced routes. How-
ever, it is important to note that while obtaining the counting estimator is not
a very hard task, one cannot expect that the full enumeration procedure will
always be computationally feasible. Namely, when the total number of sched-
ules is prohibitively large, we are forced to resort to alternative approaches. In
order to deal with this scenario, we propose a simple and fast heuristic, which
is able to obtain high-quality solutions to the OBS problem. One of the major
advantages of the proposed framework is that it is capable of determining the
problem’s hardness. Namely, provided that the counting estimator in the first
step shows a relatively small number, we know that the problem in hand is
easy, in the sense that a set of globally optimal solutions can be obtained via
full enumeration while using a reasonable computational effort.

Due to the problem importance, the (aircraft) routing problem has been
addressed by many researchers in the past. While the majority of this research
effort focused on applying mathematical programming and other heuristic tools
[2,18,25,15,7,1], in a recent work of Stern and Gertsbakh [24], the authors
proposed to handle the problem of balanced scheduling by utilizing the deficit
function approach; for details, please see [17]. Stern et al. suggest to decompose
an aviation schedule of aircraft flights into aircraft chains (or routes). Then,
the authors use the corresponding deficit function and show how one can
construct a near optimal balanced schedule in a sequential manner, namely,
a schedule that has many balanced routes. In this paper, we apply a more
general approach with a view to develop generic algorithms for counting and
optimization of balanced schedules.

In particular, as we show in Section 2, one can take advantage of the fact
that the OBS task can be viewed as a generalization of the minimum chain de-
composition problem of partially ordered sets [22]. The minimum chain decom-
position problem was first proposed by [9], and the correspondence between the
Dilworth’s problem and the maximum matching problem in bipartite graphs
was established by [11]. This correspondence allows to apply computation-
ally efficient techniques in order to obtain the optimal (minimum) number of
aircrafts needed to service a given set of routes, [13]. Moreover, by counting
all maximum matchings in the corresponding bipartite graph, we can retrieve
all possible schedules that use this minimum number of aircrafts. The detailed
explanation of these ideas is specified in Section 2. Having in mind the relation-
ship between maximum matchings in bipartite graphs and optimal solutions
of the Dilworth’s problem, we recognize that when the full enumeration of all
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maximum matchings is computationally feasible, one can obtain an optimal
solution to the OBS task. In fact, in this case, one can even retrieve the set
of all optimal solutions. Alternatively, if the number of maximum matchings
is too large for the full enumeration procedure, we propose a simple heuristic
approach based on a local search in the corresponding maximum matching
space, which is capable of optimizing the schedule with a view to increase the
number of balanced routes. The heuristic method is detailed in Section 3.3.

It is important to note that the problem of counting of maximum match-
ings in bipartite graphs belongs to the #P complexity class [28,20,10,8], that
is, the problem is computationally hard. The #P complexity class consists of
counting problems that are associated with the problem of counting the num-
ber of accepting paths of a polynomial-time non-deterministic Turing machine.
To cope with the task of counting maximum matchings in bipartite graphs,
we propose to apply an approximate counting procedure called the stochastic
enumeration (SE) method. It was shown that for some counting problems,
the SE algorithm has a provable variance reduction guarantee [14,21,26]. In
addition, the SE method has a further advantage in the sense that the algo-
rithm can also be used for fully enumerating maximum matchings, subject to
a reasonable cardinality of the maximum matchings set. The proposed two-
step framework exploits this property in the full enumeration step. The major
contribution of this study is as follows.

1. Our first contribution is the introduction of a randomized algorithm that
can estimate the hardness of an OBS problem instance under consideration.
In addition, as stated above, the proposed counting algorithm can also fully
enumerate the set of all feasible solutions, namely, the set of all schedules
that require the minimum number of aircrafts, provided that the latter is
of a reasonable cardinality. In this case, the method allows to obtain the
set of globally optimal solutions to the OBS problem.

2. Our second contribution is a fast and simple heuristic that one can apply,
if the number of feasible solutions is too large for the full enumeration
procedure.

3. Finally, we provide a research software package that can both handle real-
life scheduling problems, and is able to provide good solutions while using
a reasonable computation time. To the best of our knowledge, there exists
no other non-proprietary package that can operate under the OBS problem
setting.

The rest the paper is organized as follows. In Section 2 we formally es-
tablish the OBS problem setting and provide the required background on the
correspondence of scheduling problems, partially ordered sets, and maximum
matchings in bipartite graphs. The proposed two-stage framework is described
in Section 3. In particular, we give an overview of the SE algorithm and detail
the local search heuristic procedure. In Section 4 we present an experimen-
tal study that demonstrates the performance of the proposed methods when
applied to several scheduling problems, including a real-life application to the
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Australian domestic flights timetable. Finally, in Section 5 we summarize our
findings and discuss possible directions for future research.

2 Problem formulation

In order to formally define the OBS problem setting, we start with important
definitions that are partly adopted from [17]. Let T = {1, . . . ,m} be a set of
terminals, where terminals are related to spatial locations such as airports or
bus stops. In order to define schedules, we proceed with a formal definition of
passages and timetables.

2.1 Definitions

Definition 1 (Passages and timetables) A passage (or trip), is defined as
a 4-tuple s = (p, q, ts, te), where p ∈ T and q ∈ T denote the departure and
the arrival terminals, and ts ∈ R+ and te ∈ R+, such as ts ≤ te, stand for
departure and arrival times, respectively. It is assumed that each passage is
performed by a single resource (such as an aircraft or a vehicle), and that each
resource can service any passage. A set of passages:

S =
{
si

def
=
(
p(i), q(i), t(i)s , t(i)e

)
: i ∈ I

}
,

where I = {1, . . . , n} is a set of passage indices, is called a timetable.

Definition 2 (Feasibly joined passages) A passage si ∈ S is feasibly joined
to a passage sj ∈ S, if si and sj can be serviced sequentially by one resource.

In this case, conditions: 1) q(i) = p(j), and 2) t
(i)
e ≤ t

(j)
s , are satisfied. If si

is feasibly joined to sj , we say that si is a predecessor of sj , and that sj is a
successor of si.

Note that conditions 1) and 2) in Definition 2 are natural in the sense that
the arrival terminal of the passage si is equal to the departure terminal of the
passage sj and that the arrival (end) time of passage si is smaller or equal to
the departure (start) time of the sj-th passage. It is convenient to express the
relationship between feasibly joined passages si and sj , using a notation of
partially order sets (POSET) [22]. In our setting, a POSET is a pair (P, �) of
a set P and a binary relation �. In particular, given a timetable S, we define

P def
= S and use the binary relation si � sj to signify that si is a predecessor

of sj .
A set of feasibly joined passages, namely, a sequence of passages s1, s2, . . . , sl,

1 ≤ l ≤ n, ordered in such a way that each adjacent pair of passages satisfy
conditions 1) and 2) from Definition 2, is called a chain or a block. That is, a
chain is a set of passages that can be serviced by a single resource. In order to
indicate that a sequence of passages s1, s2, . . . , sl corresponds to a chain, we
can write s1 � s2 � · · · � sl. Finally, we arrive at the definition of a schedule.
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Definition 3 (Schedule) Given a timetable S, a schedule is defined to be a
set of disjoint chains, in which each passage si ∈ S is included in exactly one
chain.

1. We further define an optimal schedule to be a schedule that results from a
timetable partition (or decomposition), to a minimum number of chains.

2. The OBS problem is thus defined as a task of finding an optimal schedule,
which also contains a maximum number of balanced chains. We note that
the chain s1 � s2 � · · · � sl is balanced, if p(1) = q(l) holds.

Given a timetable, the number of chains in a chain decomposition is equal
to the number of required resources needed to service this timetable. In other
words, the chain decomposition determines the minimum required fleet size
[17,24]. Therefore, it will be reasonable to examine decompositions with a
minimum number of chains. We would like to stress again, that such decom-
positions are optimal in the sense of the number of required resources (or
minimum fleet size), since we only require one resource per chain.

As noted in the introductory section, the minimum chain decomposition
problem was considered by [9]. In particular, we can show that the schedul-
ing task essentially corresponds to a more general Dilworth’s problem. The
Dilworth’s problem setting is as follows. Let (P, �) be a POSET and let two
elements u ∈ P and w ∈ P be comparable, if u � w or w � u holds. Oth-
erwise, we say that u and w are non-comparable. Then, a subset U ⊆ P is
independent, if for all u,w ∈ U , u and w are non-comparable. Such U is also
called an antichain. In addition, a subset U ⊆ P is a chain, if for all u,w ∈ U ,
u and w are comparable; that is, every two elements of U are comparable.

Dilworth’s theorem states that for any finite POSET, the number of ele-
ments in a largest antichain is equal to the number of chains in a minimum
chain decomposition [9]. The Dilworth’s problem objective is to find the min-
imum chain decomposition of (P, �), such that each element of P belongs
to exactly one chain. In other words, the Dilworth’s problem corresponds to
the optimal scheduling problem from Definition 3. An illustration of minimum
chain decomposition of a POSET is provided in Example 1.

Example 1 Let P = {1, 3, 7, 21} be the set of divisors of the number 21, and
let us define element divisibility as the partial order. That is, it holds that:

1 � 3, 1 � 7, 1 � 21, 3 � 21, 7 � 21.

This is not very hard to see that the maximum cardinality antichain is (3, 7),
and that a corresponding minimum chain decomposition is {(1, 3, 21), (7)}.
However, it is important to note that the minimum decomposition {(1, 3, 21), (7)}
is not unique. For example, the {(1, 3), (7, 21)} decomposition is also a mini-
mum decomposition. In Example 2, we will see that for this specific POSET,
there are four minimum decompositions and that the set of all minimum de-
compositions is:
{{

(1, 3, 21) , (7)

}
,

{
(1, 3), (7, 21)

}
,

{
(1, 7), (3, 21)

}
,

{
(1, 7, 21), (3)

}}
.
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An optimal solution to the minimum chain decomposition problem can
be obtained in polynomial time, since there exists a direct correspondence of
the Dilworth’s problem to the problem of finding a maximum matching in
bipartite graphs [11,13]. We formally define a matching as follows. Given a
graph G = (V,E), where V is the set of vertices and E is the set of edges,
a matching is a set of edges E′ ⊆ E, such that no two edges in E′ share a
common vertex. A maximum (cardinality) matching is a matching in G, that
has the maximum number of edges.

The relation of Dilworth’s problem to the maximum matching problem in
bipartite graphs was established by [11]. To see this correspondence, consider
the following construction of a bipartite graph from a POSET

(
P def

= {u1, . . . , un} ; �
)
.

For each element ui ∈ P, where 1 ≤ i ≤ n, define two vertices ai and bi,
and let G = (Va, Vb, E) be a bipartite graph, where Va = {a1, . . . , an}, and
Vb = {b1, . . . , bn}. In addition, let (ai, bj) ∈ E, if it holds that ui � uj , for
1 ≤ i, j ≤ n. Now, find a maximum bipartite matching M in G, and let C
be a family of chains formed by including ui and uj in the same chain if
there exists an edge (ai, bj) ∈M . Then, the maximum matching M in G, cor-
responds to the decomposition C of (P,�), such that C is a minimum chain
decomposition [11]. It is worth noting that a maximum matching in a bipartite
graph can be found efficiently, for example via the Hopcroft-Karp algorithm, in

O
(
|E|
√
|Va ∪ Vb|

)
time [13]. This correspondence between maximum match-

ings and minimum chain decompositions is illustrated in Example 2.

Example 2 Consider the bipartite graph in Fig. 1, and note that this graph
was induced by the POSET from Example 1. A careful observation of Fig. 2,
reveals that the figure shows all possible maximum matchings of the bipartite
graph from Fig. 1. Having in mind that a family of chains formed by including
ui and uj in the same chain, if there is an edge (ai, bj) ∈M , it is not very hard
to see that Figures 2 (a), 2 (b), 2 (c), and 2 (d), correspond to the minimum
chain decompositions:

{{
(1, 3, 21) , (7)

}
,

{
(1, 3), (7, 21)

}
,

{
(1, 7), (3, 21)

}
,

{
(1, 7, 21), (3)

}}
,

respectively.

2.2 A timetable example

We finalize this section by demonstrating the importance of obtaining high
quality solutions to the OBS problem. In order to do so, we consider a flight
scheduling example from [24].
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Fig. 1: A bipartite graph constructed from the POSET defined in Example 1.
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Fig. 2: All possible maximum matchings of the bipartite graph from Fig. 1.

Stern and Gertsbakh [24], examine the problem of finding a balanced flight
schedule given a timetable with 30 passages and 4 terminals. The timetable
data, which is denoted by F30, is summarized in Appendix A (Table 3). The
authors show that the minimum chain decomposition has the cardinality of
12. That is, the minimum required aircraft fleet size that can service the F30
timetable, is equal to 12. Fig. 3 and Fig. 4 show two optimal schedules (or
minimum decompositions). However, these schedules are different in the sense
that there are 3 and 7 balanced chains in Fig. 3 (chains 1, 2, and 3), and Fig. 4
(chains 1, 2, 3, 4, 5, 6, and 7), respectively.

We already saw that aircrafts that service a balanced chain do not require a
deadheading flight. In addition, the advantage of having many balanced chains
is coherent from the maintenance point of view. For example, if required, an
aircraft that services a balanced chain can undergo an overnight maintenance
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Chain 1

Chain 2

Chain 3

Chain 4

Chain 5

Chain 6

Chain 7

Chain 8

Chain 9

Chain 10

Chain 11

Chain 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hours)

(BL)

(BL)

(BL)

2 4
(1)

4 2
(15)

2 4
(14)

4 2
(2)

2 3
(9)

2 1
(22)

3 2
(25)

1 2
(18)

3 4
(13)

3 4
(8)

4 1
(3)

1 2
(20)

4 2
(5)

2 3
(12)

3 2
(10)

2 4
(30)

2 1
(7)

1 2
(23)

2 3
(4)

2 1
(16)

1 2
(17)

2 1
(19)

1 2
(26)

2 3
(27)

3 2
(28)

4 1
(29)

1 2
(21)

2 3
(6)

3 2
(11)

2 3
(24)

Fig. 3: A minimum decomposition of the F30 timetable. There are three bal-
anced chains (chains 1, 2, 3), denoted by (BL). Each flight is marked by an
arrow and is identified by the flight number (over the arrow), and the start and
the end terminals on the left and on the right sides of the arrow, respectively.
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2 4
(30)

1 2
(17)

2 1
(19)

3 4
(13)

3 4
(8)

4 1
(3)

1 2
(20)

2 1
(7)

2 3
(4)

1 2
(23)
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(24)

Fig. 4: A minimum decomposition of the F30 timetable. There are seven bal-
anced chains (chains 1, . . . , 7), denoted by (BL). Each flight is marked by an
arrow and is identified by the flight number (over the arrow), and the start and
the end terminals on the left and on the right sides of the arrow, respectively.

work at its home airport. Moreover, a maximization of the number of aircrafts
that return to the initial departure terminal at the end of the working day,
can introduce additional benefits to aircrew scheduling. For instance, we can
consider a rest time property of a chain. The rest time R is defined as the time
between the last arrival time during the day and the next day departure. It
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is crucial that such time is as long as possible, say at least 11 hours, since if
the rest time is sufficient, the chain can be (conceivably) handled by the same
aircrew during the next working day. For example, the rest times for chains 1, 2
and 3 in Fig. 3 are: 8.5, 10.5, and 8 hours, respectively. On the other hand, the
rest times for chains 1, . . . , 7 in Fig. 4 are: 8.5, 10.5, 6.5, 8, 9.5, 12, and 13.5
hours, respectively.

In the following section, we detail the proposed two-step procedure for
handling OBS problems.

3 Methods

The proposed two-step procedure is summarized in Fig. 5. The input is a
timetable S and a threshold value T, which we typically set to be T = 106.

Depending on the counting estimator value
(
̂̀
)

, obtained in the first step,

the execution of the second step results in either an exact or an approximate
solution to the corresponding OBS problem.

Step 1
calculate ℓ̂ — the estimator of the
number of optimal schedules ℓ

timetable: S threshold: T

is ℓ̂ ≤ T?

Step 2 (exact)
fully enumerate all optimal schedules

and deliver the set of all optimal
solutions to the OBS problem

Step 2 (approximate)
deliver a solution to the OBS prob-
lem using a heuristic algorithm

yesno

Fig. 5: The two-step framework for OBS problems.

Our first objective is to develop a randomized counting algorithm which is
capable of delivering ̂̀, an estimator of the true number of optimal schedules
`. While the correspondence between optimal schedules and maximum match-
ings in bipartite graphs was established in Section 2, note that here we are
concerned with the counting problem. Therefore, it is still required to establish
that this reduction is parsimonious, namely, that the transformation from the
original minimum chain decomposition problem, to the problem of counting
of maximum matchings in the corresponding bipartite graph, preserves the
number of solutions [12]. This result is established in Lemma 1.

Lemma 1 (Maximum matchings and minimum chain decompositions)
The reduction between the minimum chain decomposition problem and the
maximum matching problem is parsimonious.

Proof Recall that given a POSET
(
P def

= {u1, . . . , un} ; �
)
,
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we define for all ui ∈ P (where 1 ≤ i ≤ n), two vertices ai and bi, and
construct the corresponding bipartite graph G = (Va, Vb, E), where Va =
{a1, . . . , an}, Vb = {b1, . . . , bn}, and (ai, bj) ∈ E, if it holds that ui � uj
for 1 ≤ i, j ≤ n. This construction can be performed in polynomial time in
the size of the POSET. Specifically, the time complexity is O

(
n2
)
, since there

are at most
(
n
2

)
= n(n−1)

2 binary relations in a POSET with n elements. Simi-
larly, the polynomial complexity holds for the task of constructing the POSET
(P,�) from a bipartite graph G = (Va, Vb, E).

The one-to-one relationship between a minimum decomposition and a max-
imum matching is established from the construction process. In particular,
recall that given a maximum matching M in G, we defined a family of chains
C (where C is a minimum decomposition [11], formed by including ui and uj
in the same chain of C, if (ai, bj) ∈ M). That is, by construction, each max-
imum matching M corresponds to a unique minimum chain decomposition
C. In order to see that every minimum chain decomposition C corresponds
to a unique maximum matching in G, consider two different minimum chain
decompositions C and C ′, and suppose that both C and C ′ correspond to the
same maximum matching M in G. Since C 6= C ′, there exists at least one pair
of POSET’s elements ui and uj , such that ui is a predecessor of uj in some
chain of C, and such that ui is not a predecessor of uj in any chain of C ′.
Therefore, it both holds that (ai, bj) ∈ M and that (ai, bj) /∈ M , which leads
to a contradiction to the assumption that C and C ′ correspond to the same
maximum matching M in G.

From Lemma 1, we conclude that the reduction to the maximum matchings
problem is parsimonious. That is, in order to count minimum decompositions
(or optimal schedules), one can instead count maximum matchings in the
corresponding bipartite graph. We next show how the counting maximum
matching problem can be regarded as a tree counting problem, and give a brief
overview of the general SE method for counting trees.

3.1 The tree counting problem

Following the above discussion, we restrict our attention to counting maximum
matchings in bipartite graphs. The problem is in #P [28,20,10,8], and, there-
fore, our focus is on the development of an approximate counting technique.
We start with the definition of the tree counting problem.

Definition 4 (The tree counting problem [26]) Consider a rooted tree
T = (V, E) with node set V and edge set E (so that |E| = |V| − 1). We denote
the root of the tree by v0, and for any v ∈ V, the subtree rooted at v is denoted
by Tv. With each node v is associated a cost c(v) ∈ R. Then, the tree counting
problem is to calculate the total cost of the tree,

Cost(T )
def
= Cost (Tv0) =

∑

v∈V
c(v),
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or more generally, the total cost of a subtree Tv denoted by Cost(Tv).

We first show that the task of calculating the number of maximum match-
ings in a bipartite graph can be reduced to the tree counting problem from
Definition 4. To see this, consider the following tree construction process.
Given a bipartite graph G = (Va, Vb, E), where Va = {a1, . . . , an} and Vb =
{b1, . . . , bn}, suppose without loss of generality that (a1, . . . , an) is an arbitrary
vertex ordering of Va. Next, define the tree root and suppose that the root node
contains an empty matching prefix, namely M = ∅. In addition, assume that
the root node is associated with the a1 vertex and denote all edges incident to
a1 by Ea1 = (e1, . . . , ek). For each edge e ∈ Ea1 , examine if the inclusion of
e in M , can eventually result in a maximum matching. Additionally, check if
there is a possibility of not including the a1 vertex in the maximum matching
at all. Note that these subproblems are easy in the sense that they can be
solved in polynomial time [13]. Each successful possibility detailed above, is
extended to be a child of the tree node associated with a1, which in turn will
be associated with the next vertex in the ordering, namely, with a2, and will
contain the corresponding maximum matching prefix. The tree construction
is then continued in the recursive fashion, until a leaf node is reached. Such
leaf node will contain a matching that has a maximum cardinality, that is, a
maximum matching. For each such leaf node, we assign a cost of 1; all other
(non-leaf) nodes are being assigned with the zero cost. A formal considera-
tion of the correctness of the proposed tree counting construction is given in
Proposition 1.

An important concept which is required for further discussion is a tree level.

Definition 5 (The tree level) Consider a rooted tree T = (V, E) with node
set V and edge set E . The number of edges from the root node of T to a node
v ∈ V is called a depth of v. We refer to the collection of all nodes that have
the same depth as a tree level.

Example 3 (A tree construction) To get a better understanding of the above
tree construction process, consider the bipartite graph from Example 2. We
saw that in this example, the cardinality of the maximum matching is 2.
Suppose now that (a1, a2, a3, a4) = (1, 3, 21, 7) is an arbitrary vertex ordering
of Va = {1, 3, 7, 21}, and let us examine the creation of the corresponding tree,
which is shown in Fig. 6. We start with the root node, which is associated
with a1 and contains the empty maximum matching prefix M = ∅. Note that
vertex a1 should be included in all maximum matchings. To see this, note
that if a1 = 1 is not in the matching, then, the resulting matching will be
of cardinality 1 since we only have two remaining edges, (3, 21) and (7, 21)
(please see Fig. 1). Therefore, no child will contain the empty matching prefix
M = ∅. Moreover, the edge (1, 21) cannot be a part of a maximum matching
too. That is, if we add (1, 21) to the matching, then, it is not very hard to see
(using Fig. 1), that no other edges can be added to this matching. Thus, the
resulting matching is of cardinality 1 and this is not a maximum matching.
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With this in mind, the root split will result in two children induced by edges
(1, 3) and (1, 7) (these are the only possibilities that can potentially produce
a maximum matching — please see Fig. 2). At the second level of the tree
(which contains the M = {(1, 3)} and the M = {(1, 7)} nodes), we consider
the set of edges incident to a2. Taking a closer look at the leftmost child of the
root (which contains the matching prefix M = {(1, 3)}), we note that there is
only one edge to consider, specifically, the (3, 21) edge (please see Fig. 2 (a)).
This edge corresponds to the leftmost child at level 3, which also happens to
be a leaf node since it contains the maximum matching M = {(1, 3), (3, 21)}.
On the other hand, one can extend the M = {(1, 3)} matching without the a2
vertex (please see Fig. 2 (b)), and this is the reason for having a child with
the M = {(1, 3)} matching prefix at level 3; note that this is the rightmost
child of the M = {(1, 3)} node at level 2. The recursive construction for each
node continues in the similar fashion and we can readily verify that the Fig. 6
tree leaf nodes contain all possible maximum matchings (that were detailed in
Example 2).

a1 = 1

a2 = 3

a3 = 21

a4 = 7

M = ∅

M = {(1, 3)}

M = {(1, 3), (3, 21)} M = {(1, 3)}

M = {(1, 3)}

M = {(1, 3), (7, 21)}

M = {(1, 7)}

M = {(1, 7), (3, 21)} M = {(1, 7)}

M = {(1, 7)}

M = {(1, 7), (7, 21)}

Fig. 6: The counting tree for the bipartite graph from Example 2.

Proposition 1 (The tree construction process) Given a bipartite graph
G = (Va, Vb, E), and the proposed construction process of the corresponding
counting tree T , it holds that:

Cost(T ) = |{M |M is a maximum matching in G}|.

Proof First, note that a tree leaf node v ∈ V such that c(v) = 1, will be
associated with a matching of cardinality |M |; here, |M | is the cardinality
of a maximum matching in G. This follows from the construction process.
Specifically, during the tree creation, a child is formed only if it can later be
extended to a maximum matching. In addition, for each non-leaf tree node, the
split leads to different matchings. To see this, let a ∈ Va be a vertex associated
with a non-leaf tree node u ∈ V. Note that for each tree child of u, it holds that
a is either matched with some vertex b ∈ Vb, or not matched at all. In other
words, each child of u contains a prefix of some distinct maximum matching
in G.

In addition, for any maximum matching M , it is not very hard to show
that there exists a path from the tree root to a leaf node, such that this leaf
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node contains M . In order to reconstruct this path, fix a maximum matching
M and consider, without loss of generality, the (a1, . . . , an) vertex ordering of
Va. Now, start the reconstruction process from the tree root. Given M , there
are two possibilities, that is, for some 2 ≤ j ≤ n, either (a1, bj) ∈ M , or
(a1, bj) /∈M . If it holds that (a1, bj) ∈M , we consider the corresponding child
of the root node, which contains the matching prefix {(a1, bj)}. Otherwise,
if (a1, bj) /∈ M , consider the child of the root node that contains the empty
matching prefix (M = ∅). Note that such children should exist based on the
construction process definition. By continuing recursively in the same fashion
at each tree level associated with the (a2, . . . , an) ordering, we arrive to the
leaf node that contains the desired matching M .

Unfortunately, the corresponding tree can be prohibitively large, and, there-
fore, one cannot usually construct or inspect it explicitly. However, it is possi-
ble to traverse such tree in a stochastic manner, namely, to perform a random
walk starting from the tree root and ending in one of the tree leaves. Our ob-
jective is to develop an estimator for the true cost of the tree, while restricting
ourselves to the usage of random walks. Under our setting, the estimator will
provide an approximate cardinality of the set of all maximum matchings. In
order to accomplish this task, we proceed with a brief overview of the SE algo-
rithm, which provides an unbiased estimator and is basically a generalization
of Knuth’s estimator for counting trees [14,21,26].

3.2 The stochastic enumeration method for counting trees

Definition 6 sets the stage by establishing the required notation.

Definition 6 (Hyper nodes and forests [26])

Consider a rooted tree T = (V, E) with node set V and edge set E , where
|E| = |V|− 1. Let {v1, . . . , vr} ∈ V be a subset of tree nodes such that r ≤ |V|.

– We call a collection of distinct nodes in the same level (depth) of the tree
v = {v1, . . . , vr} a hyper node of cardinality |v| = r.

– Let v be a hyper node. Generalizing the tree node cost, we define the cost
of the hyper node as c(v) =

∑
v∈v c(v).

– Let v be a hyper node. Define the set of successors of v as S(v) =⋃
v∈v S(v), where S(v) is the set of successors (children) of node v.

– Let v be a hyper node and let B ∈ N, B ≥ 1. Define

H(v) =

{
{S(v)} if |S(v)| ≤ B
{w | w ⊆ S(v), |w| = B} if |S(v)| > B,

(1)

to be the set of all possible hyper nodes having cardinality max{B, |S(v)|}
that can be formed from the set of v’s successors. Note that if |S(v)| ≤ B,
we get a single hyper node with cardinality |S(v)|.
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– For each hyper node v let Tv =
⋃
v∈v Tv, be the forest of trees rooted at v.

An example of hyper node v = {v1, v2, v3, v4} and its corresponding forest
Tv = {Tv1 , Tv2 , Tv3 , Tv4} is shown in Fig. 7.

– For each forest rooted at hyper node v, define its total cost as Cost (Tv) =∑
v∈v Cost(Tv).

vv1 v2 v3 v4

Fig. 7: Hyper node v that contains regular tree nodes v1, v2, v3 and v4 with
their corresponding subtrees.

Based on Definition 6, we can state the main SE procedure, which is sum-
marized in Algorithm 1.

Algorithm 1: The stochastic enumeration algorithm
Input: A forest Tv rooted at a hyper node v, a cost function c : V → R, and a

budget B ≥ 1
Output: An unbiased estimator of Cost(Tv)

1 Set k ← 0, D ← 1, X0 ← v and CSE ← c(X0)/|X0|.
2 Let S(Xk) be the set of all children of Xk.
3 if S(Xk) = ∅ then
4 return |v|CSE as an estimator of Cost(Tv).
5 end
6 Choose hyper node Xk+1 ∈ H(Xk) at random (note that H(Xk) is defined in (1)

and depends on the budget B), each choice being equally likely.
7 Set Dk ← |S(Xk)|/|Xk|, D ← DkD, and

CSE ← CSE +

(
c(Xk+1)

|Xk+1|

)
D.

8 Set k ← k + 1 and return to line 2.
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It can be shown that Algorithm 1 outputs a random variable

CSE =
c(X0)

|X0|
+
|S(X0)|
|X0|

c(X1)

|X1|
+
|S(X0)|
|X0|

|S(X1)|
|X1|

c(X2)

|X2|
+ · · · (2)

· · ·+


 ∏

0≤j≤τ−1

|S(Xj)|
|Xj |


 c(Xτ )

|Xτ |
,

where τ ≤ h (here, h is the height of the forest’s deepest tree), is the random
variable that represents the length of the random walk [26]. The term


 ∏

0≤j≤k−1

|S(Xj)|
|Xj |


 c(Xk)

|Xk|
= D

c(Xk)

|Xk|
,

(which is calculated in line 7 of Algorithm 1), is the estimator of the total cost
of vertices at the k-th tree level. In addition, this estimator is unbiased; that
is, for a tree T rooted at v0, and for v0 = {v0}, E (CSE)) = Cost (T ). For the
proof of unbiasedness, efficiency considerations, and examples, we refer to [27,
26].

While Algorithm 1 outputs an unbiased estimator of the true counting
value, a common practice is to repeat this algorithm for NSE ≥ 1 indepen-

dent replications, obtain independent unbiased estimators C
(1)
SE , . . . , C

(NSE)
SE ,

and report the average:

̂̀=
1

NSE

NSE∑

r=1

C
(r)
SE .

As soon as these NSE estimators are available, one can also measure the accu-
racy of the final estimator ̂̀, by calculating the estimator’s relative error (RE),

which is equal to

√
Var

(
̂̀
)
/ (E[`])

2
[21]. Since the exact RE is generally not

available, a common practice is to estimate this quantity via

R̂E =

√√√√ 1
NSE−1

∑NSE

r=1

(
C

(r)
SE − ̂̀

)2

̂̀2 .

The major advantage of the SE algorithm is due to its built-in splitting
mechanism [21, Chapter 4]. The latter can bring an enormous variance reduc-
tion, and in some cases, to achieve a zero-variance estimation [3]. In fact, if
we set the SE algorithm budget parameter to be greater than or equal to the
maximum tree width [4], the SE algorithm provides a zero-variance estimator
and can be used for fully enumerating all leaf nodes. In this case, all maxi-
mum matchings will be placed at the tree leaf nodes that will be present in
the hypernode Xh in the final iteration of Algorithm 1. Thus, a set of optimal
solutions can readily be obtained by reviewing all nodes of the Xh hypernode.
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Example 4 We consider the tree from Example 3 and execute the SE Algo-
rithm 1 with budget B = 1. With the view to counting leaf nodes, we further
assume that the cost function is

{
c(v) = 1 if v is a leaf node,

c(v) = 0 otherwise.

Note that there are four random walks from the tree root to the tree leaves.
Moreover, it is not very hard to see that each random walk is chosen with
probability 1/4. Finally, the value of the random variable D is always equal
to 1 × 2 × 2 = 4, since for any random walk, there are exactly two splits at
levels 1 and 2, and for each split, there are two children. We conclude that the
SE algorithm outputs CSE = 1×D = 4, regardless of the chosen path. In this
case, it is clear that E[CSE] = 4, and that

E
[
C2

SE

]
= (1× 4)2

1

4
+ (1× 4)2

1

4
+ (1× 4)2

1

4
+ (1× 4)2

1

4
= 16

⇒ Var(CSE) = E
[
C2

SE

]
− (E[CSE])

2
= 16− 42 = 0.

That is, we obtained a zero-variance estimator. Please note that this favorite
scenario is not very common in practice. In particular, we managed to obtain
a zero-variance estimator while using the smallest possible budget B = 1,
because the tree from Example 3 is highly symmetric. This rarely happens in
reality, and the user needs to increase the budget B in order to reduce the
estimator’s variance. For additional examples, we refer to Section 3 and the
Appendix in [27]. Finally, we note that the maximum width of the tree in
Fig. 6 is equal to 4, so, by setting B = 4, the SE algorithm will reveal the
entire set of leaf nodes (which will be present in the hypernode X4 in the final
iteration of Algorithm 1).

In order to complete the description of the two-step framework from Fig. 5,
we need to consider the case in which the counting estimator has a large
value; under this setting, the full-enumeration procedure will be computation-
ally infeasible. Having in mind that the problem of finding balanced chains is
NP-hard [29,24], we suggest to use a heuristic method to obtain the desired
solution. The proposed heuristic is detailed next.

3.3 The heuristic

In this section, we are concerned with the task of constructing a heuristic
procedure that can handle the OBS problem. Specifically, our major objec-
tive is to maximize the number of balanced chains. However, in addition, we
would like to consider a secondary objective that was discussed in Section 2.2,
specifically, the maximization of the number of chains with the rest time that
is greater than or equal to some predefined threshold. Moreover, the aim is
to construct a procedure that is fast, namely, we expect the method to be



Optimal balanced chain decomposition 17

able to handle relatively big timetables that emerge from real-life problems.
Finally, the procedure should be designed in such a way that it can be easily
extended to handle additional optimization criteria. For example, we might
like the flight time of each aircraft, and in particular the total flight time in
each chain, to be as similar as possible.

With this in mind, we propose to apply the heuristic approach which is
summarized in Algorithm 2. The heuristic in Algorithm 2 is essentially a local
search procedure. First, recall that there exists a correspondence between de-
compositions and maximum matchings. Algorithm 2 starts with an arbitrary
maximum matching M (line 3). Then, using a randomized procedure, a new
maximum matching M ′ is produced. Since there exist decompositions d and
d′ that correspond to M and M ′, respectively, one can choose and accept the
best decomposition (and matching) (see lines 8-11). The procedure continues
in this fashion until some stooping condition is met.

Algorithm 2: The heuristic
Input: A timetable S, and a binary relation �os over the sets of all optimal

schedules
Output: An optimized schedule

1 Create a POSET (P, �) from S.
2 Construct a bipartite graph G = (Va, Vb, E) from the POSET (P, �); see Section 2
3 Find a maximum matching M of G = (Va, Vb, E)
4 Construct a chain decomposition d from the maximum matching M
5 while stop condition is not met do
6 Create maximum matching M ′ by modifying the maximum matching M using

Algorithm 3
7 Construct a chain decomposition d′ from the maximum matching M ′

8 if d �os d′ then
9 M ←M ′

10 d← d′

11 end

12 end
13 return d – an optimized schedule

In order to complete the description of the heuristic Algorithm 2, we need
to specify the termination condition in line 5, the binary relation �os in line
8, and the creation of a modified maximum matching in line 6.

1. The termination condition in line 5 depends on the user preferences. Specif-
ically, one can decide on a certain number of iterations of the while loop
(lines 5 – 12), or alternatively, to specify a predefined runtime limit for the
algorithm’s execution.

2. While the binary relation �os can be easily modified or extended according
to user’s needs, in this study, the relation �os is defined as follows. Given
a minimum chain decomposition d, let B(d) and R(d) be the number of
balanced chains and the number of chains with rest time greater than or
equal to some threshold (say eleven hours), respectively. Then, for two
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Algorithm 3: The maximum matching sampler

Input: A bipartite graph G = (Va, Vb, E), and a maximum matching M ⊆ E
Output: A maximum matching

1 k ← |M |
2 Select an edge e ∈M uniformly at random and remove e from M
3 while |M | < k do
4 Select an edge e = (u, v) ∈ E \M uniformly at random

/* We say that a vertex w ∈ Va ∪ Vb is matched in M, if there exists

an edge e = (w, z) ∈M, where w ∈ Va and z ∈ Vb, or w ∈ Vb and

z ∈ Va, holds. */

5 if u is matched in M and v is matched in M then
/* there exist w, z ∈ Va ∪ Vb such that (u,w) ∈M and (v, z) ∈M

--- do nothing. */

6 end
7 else if u is not matched in M and v is not matched in M then

/* there is no w ∈ Va ∪ Vb and z ∈ Va ∪ Vb such that (u,w) ∈M and

(v, z) ∈M. Namely, it is safe to add the e = (u, v) edge to the

matching M. */

8 M ←M ∪ {(u, v)}
9 end

10 else if u is matched to some w ∈ Va ∪Vb in M and v is unmatched in M then
/* there exist w ∈ Va ∪ Vb such that (u,w) ∈M and there is no

z ∈ Va ∪ Vb such that (v, z) ∈M --- exchange (u,w) with (u, v) */

11 M ←M \ {(u,w)}
12 M ←M ∪ {(u, v)}
13 end
14 else if v is matched to some w ∈ Va ∪Vb in M and u is unmatched in M then

/* there exist w ∈ Va ∪ Vb such that (v, w) ∈M and there is no

z ∈ Va ∪ Vb such that (u, z) ∈M --- exchange (v, w) with (u, v) */

15 M ←M \ {(v, w)}
16 M ←M ∪ {(u, v)}
17 end

18 end
19 return M

minimum chain decompositions d and d′ we write:

d �os d
′ if: B (d′) > B (d) , or if: B (d′) = B (d) and R (d′) ≥ R (d) . (3)

In other words, we set a preference to the maximization of the balanced
chains, and then, to the maximization of chains with rest time greater than
or equal to eleven hours.

3. Algorithm 3 summarizes the maximum matching sampler, which is used in
line 6 of Algorithm 2. This algorithm closely follows the Markov chain of
[5]; for additional details, we refer to [23].

4 Experimental study

In this section, we focus on the performance evaluation of the proposed frame-
work. Specifically, for each model under consideration, we apply the SE method
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and obtain the counting estimator for the number of minimum chain decompo-
sitions. If the estimator delivers a manageable value, that is, if the estimator’s
value is less or equal to the T = 106 threshold, we perform the full enumer-
ation procedure to obtain the set of optimal solutions to the OBS problem.
If the counting estimator is larger than this threshold, we apply the heuristic
from Section 3.3. Our benchmark study shows that the proposed framework is
very useful for determining the problem hardness, and that it is effective and
scalable in practice. Specifically, we consider the following experiments.

1. Our first case study is the F30 timetable example with 30 passages and 4
terminals from [24]. By applying the proposed two-step framework, we show
that this problem is easy (there are only 576 solutions to consider), in the
sense that the full enumeration of all optimal schedules is computationally
feasible, and thus we can obtain an optimal solution to the corresponding
OBS problem. In addition, since we know the optimal solution, this case
study allows to benchmark the heuristic algorithm from Section 3.3.

2. The purpose of the second case study is to show that one should not be
tempted to estimate a problem hardness by considering timetable param-
eters such as the number of terminals and the number of passages, only.
To see this, we generate a random timetable, which is similar to the F30
example, in the sense that it has 30 passages and 4 terminals. However, we
show that the counting estimator’s value is quite large (about 7.19× 108),
and, therefore, a full enumeration is difficult to achieve in a reasonable
time. As a consequence, we apply the proposed heuristic in order to obtain
a (possibly sub-optimal) solution to the corresponding OBS problem.

3. In the third case study, we show that the proposed framework is suitable for
handling large instances. In particular, we benchmark the method perfor-
mance on a real-life Australian domestic flights timetable with 20 airports
and 290 passages. In this benchmark, we show that this timetable can be
serviced by 88 aircrafts, and by applying Algorithm 2, we were able to
increase the number of balanced flight routes from 9 to 65.

Experimental setup

We implemented the proposed framework in C++ packages called SeMaxMatch-
ing (Algorithm 1), and TTOpt (Algorithm 2 and Algorithm 3). These pack-
ages are freely available on the author’s website under https://people.smp.
uq.edu.au/RadislavVaisman/#software. The software was compiled using
GNU g++ with full optimization for speed (using the -O3 flag). All timing mea-
sures were instrumented directly into the code. All tests were executed on an
Intel Core i7-6920HQ CPU 2.90GHz processor with 32GB of RAM running
64 bit Ubuntu 18.04 LTS. We did not implement parallelization, so all the
software is single-threaded. However, due to the nature of the SE algorithm,
parallelization would be relatively easy to include. To ensure reproducibility
of the reported results, unless stated otherwise, we use a fixed seed of 12345
when executing all algorithms. For the SE algorithm, we need two parameters
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B – the budget, and NSE – the number of replications. The heuristic requires a
single parameter N – the number of iterations. As mentioned above, the two-
step framework in Fig. 5, also requires the threshold parameter T . For all case
studies, we solve the OBS problem using the two-step procedure. Our main
objective is to maximize the number of balanced chains. However, since the
framework was specifically designed to handle additional optimization criteria,
we also consider the maximization of the number of chains with rest time R,
such that R ≥ 11 hours.

4.1 The FS30 case study

We start with the case study from [24]. The timetable consists of 30 passages
and 4 terminals. For this instance, we benchmark the SE algorithm with dif-
ferent budgets and different number of replications.

1. Step 1: The SE results for the FS30 instance are summarized in Table 1.
The data in Table 1 is informative in the sense that it shows how the R̂E
decreases as the budget B grows. In addition, it is clear that the number
of solutions is very small as compared to the threshold T = 106. In fact,
the last row (with B = 1000), gives us a zero-variance estimator, so we
conclude that there are exactly 576 solutions. The latter implies that the
problem is easy, that is, one can fully enumerate all solutions and deliver
the set of all optimal balanced schedules.

Table 1: The SE algorithm counting estimators for the FS30 benchmark using
different budgets and different number of replications.

B NSE
̂̀ R̂E Time (sec)

1 1000 583.2 0.0289 3.91
100 10 571.8 0.0172 2.27
1000 1 576.0 0.0000 0.99

2. Step 2: By performing the full enumeration, we found that an optimal OBS
solution has seven balanced chains, and there exist optimal OBS solutions
with five chains with rest time R, which is greater than or equal to eleven
hours. We utilize this knowledge to benchmark the TTOpt heuristic. In par-
ticular, we execute Algorithm 2 for N = 105 iterations. The corresponding
runtime for the completion of the TTOpt heuristic is about 0.56 seconds.
Fig. 8 depicts a typical performance of the heuristic algorithm.

In summary, the FS30 instance is easy, so one can find an optimal solution
by performing full enumeration. However, it will be incorrect to conclude that
the instance hardness is determined by the number of passages and the number
of terminals. To see this, we consider another (randomly generated) timetable
with 30 passages and 4 terminals. Nevertheless, we will show that this instance
has many optimal schedules.
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Fig. 8: Convergence of the TTOpt heuristic algorithm for the FS30 instance.
The upper and the lower figures show the number of balanced chains (#BL),
and the number of chains with rest time which is greater than or equal to eleven
hours (#R11), as a function of the algorithm’s iteration number, respectively.

4.2 A random timetable with thirty passages and four terminals

The random timetable was generated in the following way. For each passage,
we selected the departure and the arrival terminals uniformly at random. That
is, each terminal from the {1, 2, 3, 4} set is selected with probability 1/4. The
start time was selected uniformly at random from the 6:00 AM to 7:00 PM
time interval. Finally, we set the flight time for each passage to have a fixed
length of one hour.

1. Step 1: By running the SE algorithm with B = 100 and NSE = 100,
the method delivered the counting estimator value of 7.19 × 108 and the
R̂E of 0.0489; the execution time is about 47 seconds. In this case, the
full enumeration is obviously problematic, and, therefore, we apply the
heuristic procedure in the second step of the two-step framework.

2. Step 2: We run the TTOpt heuristic for N = 105 iterations. The corre-
sponding runtime for the completion of the TTOpt heuristic is about 0.45
seconds. Fig. 9 depicts a typical performance of the heuristic algorithm.
We also tried to run the heuristic with ten different seeds (specifically, by
starting the algorithm with seeds: 1, 2, . . . , 10), and increased the number
of iterations N to 106. Nevertheless, the algorithm always returned the
same result; namely, four balanced chains and eleven chains with the rest
time R ≥ 11 hours.
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Fig. 9: Convergence of the TTOpt heuristic algorithm for the random timetable
with 30 passages and 4 terminals. The upper and the lower figures show the
number of balanced chains (#BL), and the number of chains with rest time
which is greater than or equal to eleven hours (#R11), as a function of the
algorithm’s iteration number, respectively.

Remark 1 (The required number of iterations N of the heuristic algorithm and
the non-monotonic behavior of #R11) While it is not easy to specify the re-
quired number of iterations N , we recommend to execute the heuristic until
the values of #BL and #R11 stop changing for some predefined number of
iterations, say several thousands. We would also like to note that the lower
figure which corresponds to the rest time, can show a non-monotonic behavior,
while the upper plot which measures the number of balanced chains is mono-
tonically non decreasing. This behavior is due to the usage of the performance
function defined in (3). Specifically, this happens because we treat the number
of balanced chains objective as the major one.

4.3 The Australian domestic flight timetable

The third case study is motivated by the fact that the Australian domestic
flight timetable is large enough to represent a realistic problem. While there are
44 domestic airports in Australia, some major airports with the heaviest traffic
are shown in Fig. 10. The set of busiest airports include the airports of Sydney,
Melbourne, Brisbane, Perth, and Adelaide. It is worth noting that the flight
time between Perth and Brisbane exceeds five hours, so the corresponding
deadheading flight is quite expensive. This further emphasizes the importance
of obtaining good solutions to the OBS problem.
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Fig. 10: Major domestic airports in Australia.

In this case study we consider the top twenty airports. The data was
extracted from the open data-source (Monthly Airport Traffic Data for top
twenty airports: January 2009 to current), which is available from https://

www.bitre.gov.au/sites/default/files/documents. The list of top twenty
airports (in alphabetical order) is: Adelaide, Alice springs, Ballina, Brisbane,
Cairns, Canberra, Darwin, Gold coast, Hobart, Karratha, Launceston, Mackay,
Melbourne, Newcastle, Perth, Proserpine, Rockhampton, Sunshine coast, Syd-
ney, and Townsville.

We used the google maps data to calculate the flight time for each ordered
pair of airports while considering only direct flights. In addition, we collected
the information about the total number of corresponding daily flights. Next,
we benchmark the two-step methodology on a timetable that was constructed
as follows. First, we note that there are five main domestic airline carriers:
Qantas, Virgin Australia, Jetstar, Tiger Airways, and Regional Express Air-
lines, and that our aim is to build a good schedule for a specific company
(say for Qantas). As a consequence, we set the number of daily flights between
two airports to be equal to the value of a ceiling function applied on the total
number of daily flights divided by five. Next, for each pair of airports, the
flights departure times were generated uniformly at random from the 6:00 AM
to 10:00 PM time interval. The resulting timetable has 290 passages and 20
terminals.

1. Step 1: By executing a couple of SE iterations applied on this problem, we
arrive to the conclusion that the problem is very hard. In particular, the
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SE counting estimators shows that the order of magnitude of the number
of optimal schedules is 10120. During the execution of the SE algorithm, we
also learn that a minimum chain decomposition has 88 chains, that is, we
need a minimum number of 88 aircrafts to service the Australian domestic
flight timetable.

2. Step 2: Clearly, the full-enumeration procedure is infeasible in this case
and, therefore, we resort to the heuristic approach. We run the TTOpt
heuristic for N = 10, 000, 000 iterations. The corresponding runtime for
the completion of the TTOpt heuristic is about 32 minutes. Fig. 11 depicts
a typical performance of the heuristic algorithm.
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Fig. 11: Convergence of the TTOpt heuristic algorithm for the Australian
domestic airline instance. The upper and the lower figures show the number
of balanced chains (#BL), and the number of chains with rest time which is
greater than or equal to eleven hours (#R11), as a function of the algorithm’s
iteration number, respectively.

We tried to execute the heuristic using N = 108 iterations. Table 2 is in-
structive in the sense that it shows the dynamics of the improvement one
can expect to get when increasing the number of iterations. The algorithm
continues to improve the objective as the number of iterations grows. How-
ever, in order to execute N = 108 iterations, we need more than five hours
of computation time. The latter requires a careful consideration, especially
if the rescheduling task needs to be performed regularly. In this case, a
future work of developing faster algorithms is required.
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Table 2: The obtained results with the TTOpt heuristic for the Australian
domestic airlines timetable when using different number of iterations N .

N #BL #R11 Time (sec)
100 9 55 0.0024
101 9 55 0.0042
102 11 53 0.0241
103 13 53 0.1682
104 19 58 1.8523
105 24 58 19.762
106 42 58 203.98
107 53 60 1965.1
108 65 59 18809

5 Conclusions and future research

In this manuscript we proposed a two-step framework for obtaining optimal
balanced schedules. Specifically, in the first step, we developed a random-
ized counting algorithm that delivers an estimator for the number of optimal
schedules, that are not necessarily optimally balanced. We showed that this
procedure can be utilized for determining the problem’s hardness and for find-
ing the set of optimal solutions to the optimal balanced scheduling problem,
when the number of optimal schedules is not very large. For hard problems,
namely, for problems with a large number of optimal schedules, we proposed a
simple heuristic approach, which is very efficient in the sense that it can handle
hard problem instances within a reasonable computational time. We studied
the performance of this heuristic procedure, and found that it was effective
when applied to the Australian domestic flights timetable, which contains sev-
eral hundreds of passages and twenty terminals. Finally, we developed a freely
available software package that implements the two-step procedure that was
introduced in this paper.

For the future research, we believe that the following directions are of
interest.

1. While the proposed heuristic is both fast and shows a reasonable per-
formance on the problem instances examined in the numerical section of
this manuscript, it is important to consider alternative approaches. For
example, evolutionary algorithms can potentially outperform this heuristic
method. However, to handle bigger instances, such as the Australian do-
mestic flight timetable scheduling problem from Section 4, we presume that
it will be necessary to provide a parallel implementation of such methods.

2. Of great interest is to consider an extension of the optimal balanced schedul-
ing problem, in which the timetable is not fixed in advance. Namely, we
should investigate a scenario where an operator can modify flight depar-
ture times. In this case, an attractive research direction is to utilize the
stochastic enumeration method with a view to fluctuate flights in order to
minimize the total number of optimal schedules. The main idea is to min-
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imize this number until it reaches some relatively small threshold value.
Then, we can obtain a globally optimal OBS solution via the full enumer-
ation procedure.

3. It will be important to extend the optimal balanced scheduling problem
to a stochastic setting. Specifically, one can consider a quite realistic as-
sumption, under which a passage has both random departure and random
arrival times. This stochastic behavior is usually caused by circumstances
that are beyond our control. In this case, a considerable number of at-
tractive research questions arise. For example, we might be interested to
construct the most reliable balanced schedule. That is, to construct an op-
timal schedule that has the maximum possible number of balanced chains
with high probability.

4. Finally, while we provide a single-threaded implementation of the stochas-
tic enumeration algorithm package, from the practical point of view, it
would be of interest to develop a parallel software implementation that
is capable of running on multiple central processing units or a graphics
processing unit. Such parallel software package will allow practitioners to
handle large real-life timetable instances.
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2. Arnold, F., Gendreau, M., Sörensen, K.: Efficiently solving very large-scale routing
problems. Computers and Operations Research 107, 32–42 (2019)



Optimal balanced chain decomposition 27

3. Asmussen, S., Glynn, P.: Stochastic Simulation: Algorithms and Analysis, Stochastic
Modelling and Applied Probability, vol. 57. Springer, New York, NY (2007)
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6 Appendices

A The F30 timetable from [24]

Table 3: The F30 flight timetable with 30 passages. For each passage, the table
displays the flight number, the departure and the arrival terminals, and the
departure and the arrival times. Here, a fraction such as 4.5 in the first row,
stands for the 4:30AM time.

flight number departure terminal arrival terminal departure time arrival time
1 2 4 4.5 12
2 4 2 14.5 20.5
3 4 1 8.5 15.5
4 2 3 16.5 21
5 4 2 9 16
6 2 3 11.5 13
7 2 1 6 10.5
8 3 4 11 16.5
9 2 3 18 21.5
10 3 2 7 11
11 3 2 13.5 17
12 2 3 18 23
13 3 4 10.5 15.5
14 2 4 7 13.5
15 4 2 13 20
16 2 1 5.5 8.5
17 1 2 9 12.5
18 1 2 15 17.5
19 2 1 16 19.5
20 1 2 18.5 22
21 1 2 8 11
22 2 1 10 13
23 1 2 11 15
24 2 3 18.5 22.5
25 3 2 5.5 8.5
26 1 2 9 13.5
27 2 3 14 17
28 3 2 17.5 21.5
29 4 1 3 7
30 2 4 12 15


